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We prove that the nonaffine conformal transformations of four-dimensional 
Minkowski space are necessarily global causality violators, and use this fact to 
obtain an elementary group-theoretic proof of the theorem that global causality 
implies the Lorentz group. 

1. INTRODUCTION 

The proof of the theorem that causality implies the Lorentz group was 
first given by Zeeman (1964). In a previous paper (Briginshaw, 1980), the 
author has explained how the class of causal automorphisms is contained 
in the conformal group and pointed out how the presence of the inversion 
map among the generators of the conformal group shows itself by its 
violation of global causality. It seems natural, therefore, to use this fact to 
fabricate an elementary group-theoretic proof of the causality theorem; 
that is exactly the concern of th,e present paper. 

N o t a t i o n .  Let M 4 denote the vector space of quadruples of real num- 
bers of the type (x o, x l, x 2, x3) with the (indefinite) inner product ,  given 
by 

x . y  = x o Y  0 - x l y l  - x 2 Y 2  - x 3 Y 3  

We define two relations in M4, as does Zeeman (1964): (i) x < y  iff 
( x - y ) . ( x - y ) > O  and Xo <Yo (this is a partial order); (ii) x < . y  iff ( x -  
y ) . ( x - y ) - - O  and x o <Yo (this is not a partial order). We denote the pair 
(M 4, <:) by/~t  4 and the pair (M4, <- )  by M 4. 
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Causal Automorphisms 

^ p ,  ^ 

A map f :  M4---~M 4 is said to be an automorphism of M 4 if f is a 
bijection of M 4 such that both f ,  f - 1 preserve < ,  i.e., x <yc~fx <fy. 

�9 .^  .~ 

A map f:  M 4--->M 4 is similarly an automorphism of M 4 if f is bijective 
and such that x < .yc~fx < .fy. 

Each collection of automorphisms is a group^under composition, and 
we shall refer to the.group of automorphisms of M 4 as G and the group of 

automorphisms of M 4 as G. 

Lemma 1 

This is the same result as Lemma 1 of Zeeman (1964). 

2. T H E  INTERVAL T O P O L O G Y  

Define 0x, y = (z: x < z < y  }; then the collection ((0x, y }: x, y E M 4} is a 
base of neighborhoods for a topology on M4, that we call the interval 
topology (Nanda, 1976). 

We shall denote the interval topology by 1 and the Euclidean metric 
topology by E; we now have the following two results as stated and proved 
by Nanda  (1976). 

Lemma 2 

I = E  

This is Lemma 1 of Nanda  (1976). 

Lemma 3. I f f E G  t h e n f i s  a homeomorphism of ( M  n, E).  

This is Lemma 2 of Nanda  (1976). 

If f ~  G then f is a homeomorphism of ( M  4, E).  Corollary. 

Proof. 

f E G ~ f E G .  

Definition: Null Line. The set Np, q= (x: x= p  + ttb, I~ER, p - q = b ,  b.b 
= 0} is said to be the null line through p and q. 

Lemma 4. There are no null line triangles in M 4. 
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Proof Without loss of generality we may prove that if 0 < .  a < .  fl, and 
if 0 < .  fl then 0, a, fl are points of the same null line. Write a - fl =p,  so that 
p . p = 0 ;  now fl+p is a null vector, therefore fl.fl+2fl.p+p.p=O, i.e., 
fl.p = 0. If fl, p are not in the same direction, then 

+B3) "(p, +pz+p )'/==l&llp01 i lp,+ 2pz+ 3p l<(9=+/ zz 2 1/= 2 

=B0P0 

. ' . f l - p > 0  

Thus 0, a, fl are collinear. 

Lemma 5. If f E G  then f maps every null line onto a null line. 

Proof Let Np be an arbitrary null line through p, and let q G Np be such 
that p<.q. Suppose that p, q are fixed and that ~ENp is such that 
p <-  ~ < .  q. Since f ~  G it follows that fp < .f~ < .fq, and that fp, f~, fq are 
collinear. 

Definition: Conformal Map. Let f :  M4--+M 4 (compactified M4) be such 
that f is continuous at every nonsingular point and such that for all 
appropriate x, y and their maps x'=fx, y'---fy, we have 

a x '  . dy '  a x  . dy 

( a x ' . a x ' ) ' / : (  (ax .ax) l / : (ay .a 'y )  

Then f is said to be a conformal map of M4; under composition the 
collection of such maps is a group, called the conformaI group, C. 

Definition: The Inversion Map. The conformal map I: M4--+M 4 given 
by I x = x / ( x . x )  is said to be an inversion of M 4. 

3. GENERATORS OF THE CONFORMAL GROUP 

In the first of a series of papers concerning the covariance group 
associated with Maxwell's equations, Bateman (1909) proved that the 
conformal group is that generated by dilatations, Poinear6 (inlaomoge- 
neous Lorentz) transformations, and inversions. In the next lemma we 
prove that I is a global causality violator. 

Lemma 6 
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Proof Consider the null line N =  (x: x=p  +/~b, /z~R,  b-b--O, by'O). 
Now, if x EN, then 

Ix= P+l~b ~ + # [ ( p . p ) b - 2 ( p . b ) p ]  
p'p+21~b p 'p  ( p . p ) [ p . p + 2 # ( p . b ) ]  

and there is clearly one singular point on N, where the value of/~ is 

,u* = - p  "p 
2p .b  

In addition, the expression for Ix has the form 

I x=  p + a X  p .p  

where X = ( p . p ) b - 2 ( p . b ) p  is null. Thus the map of a null line is a null 
line, as expected; in addition 

O L ~  , [1 p p ] 
2 ( p . p ) ( p . b )  p.p+21~(p.b ) 

N o w p  is an arbitrary point on N and we may choose it such that 0 <p,  i.e., 
p .p  > 0 and po > 0; equally well, without loss of generality, we may con- 
sider 0 < - b ,  i.e., b.b=O and bo>0,  in which casep-b  >0.  Now, if/~1 </~2 < 
#*, or if/~* <#1 </~2, then a i < ct 2, and the relation < .  is preserved. On the 
other hand, if/L 1 <#*  </~a, then a 2 < a l ,  and the relation < .  is violated. 

Notation. We refer to the affine group generated by  translations, 
orthochronous Lorentz transformations and dilatations as P t* -  

Remark. It is easy to prove the following catalog of results concerning 
the generators of C: if ?,, t a, A are, respectively, arbitrary dilatations, 
translations, and Lorentz transformations, then 

(i) A o I - - I o X  -1 
(ii) A o I= I o A 

( i i i ) ) ~ o A = A  o)~ 
(iv) Aota=tA~oA 
(V) )~Ota=tXaO)~ 

There is no similar commutat ion relation for ta and I. We now prove the 
main theorem. 

Theorem 

Pt* =G 
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Proof. I t  is clear that P~* C G. Also, i f f E  G, t h e n f  is continuous, f rom 
Lemma  3; and f preserves null lines, from Lemma 5; from Weyl (1923) it 
follows that f ~  C. Now, if f =  a 1 o a2 o o~ 3 o a4 . . . . .  aN, where each a i is an 
element of the generating subgroups of dilatation, translation, Lorentz, and 
inversion maps, then we may arrange f thus: 

f = ) ~ o A o t a o l O t b o l O t c O l  . . . . .  t p o l o t q  

where ~, A are, respectively, a dilatation and a Lorentz transformation and  
ta, t b . . . . .  tq are translations. Consider the image of an arbitrary null line 
under f ;  without loss of generality we may take q = 0, and consider the line 
N={x:x=~+l~rl ,  where ~-~=~0,~/.,/=0,~/=/=0}. Suppose at least one 
b . . . . .  p is zero; we write K ( y ) = { x : ( x - y ) . ( x - y ) = O }  and refer to it as 
the null cone at y. I t  is clear that, for each f E  C, with b , . . . ,  p nonzero, there 
is a corresponding network of finitely many  singular surfaces. Thus, I is 
singular on K(0) (as is t v oi), Io tvoI  is singular on K(O)uK(-p /p .p )  (as 
is t jo lotpoI);  if we now write A p , j = l + 2 ( p . j ) + ( p . p ) ( j . j ) ,  then 
Io t jo  l o t ,  o I is singular on K ( O ) u K ( - p / p . p ) u K ( ( - p ( j . j ) / A p , j } -  
{j/Ap,j}),  and so on. 

Now consider the point x* at which N intersects the cone K(0), and 
let/x* be the parameter  associated with x* as in Lemma  6. Let/~1,/x2,/x3 be 
close enough to/x* to ensure that x i < . x * < . x  2 < . x  3 but that if S is the 
union of all singular surfaces for f ,  Vu, vES-K(O) ,  u < . x  I < .x  3 <.v. 

Thus Ix2<. Ix3<Ix l ;  also, for every other map of the collection 
comprising the nonaffine part  of f these relations are preserved. 

Case (i): Suppose at least one of b, c . . . . .  p :/: 0 and that A is nonortho-  
chronous, then < -  is violated for the pair x 2, x 3. 

Case (ii): Suppose at least one of b . . . . .  p ~ 0  and that A is orthochro- 
nous, then < .  is violated for the pair xl, x 2. 

Case (iii): Suppose that every b . . . . .  p = 0 and that A is nonorthochro- 
nous, then < .  is violated for every pair on N. We conclude that  every 
b, c . . . . .  p=O and that A is orthochronous, in which c a s e f E P l ' * .  

Remark. For  n > 3, the causal automorphisms of M, are always ele- 
ments of the conformal group. However, for n--2 ,  that is not true; there 
are global causal automorphisms of M 2 which are not conformal maps. 
Thus the theorem is not valid for n = 2. 
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